
A

Major Project

On

ML BASED REAL TIME SIGN LANGUAGE DETECTION
(Submitted in partial fulfillment of the requirements for the award of Degree)

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

P. Rishi Sanmitra (177R1A0548)

K. Lalithanjana (177R1A0525)

V. V. Sai Sowmya (177R1A0553)

Under the Guidance of

Dr. T. S. Mastan Rao
(Associate Professor)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS
(Accredited by NAAC, NBA, Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi)

Recognized Under Section 2(f) & 12(B) of the UGC Act.1956,

Kandlakoya (V), Medchal Road, Hyderabad-501401.

2017-21

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE
This is to certify that the project entitled “ML BASED REAL TIME SIGN LANGUAGE

DETECTION” being submitted by P. RISHI SANMITRA (177R1A0548), K.

LALITHANJANA (177R1A0525) & V. V. SAI SOWMYA (177R1A0553) in partial fulfillment

of the requirements for the award of the degree of B.Tech in Computer Science and Engineering to the

Jawaharlal Nehru Technological University, Hyderabad, is a record of bonafide work carried out by

him/her under our guidance and supervision during the year 2020-21.

The results embodied in this thesis have not been submitted to any other University or Institute

for the award of any degree or diploma.

Dr. T. S. Mastan Rao Dr. A. Raji Reddy

Associate Professor DIRECTOR

INTERNAL GUIDE

Dr. K. Srujan Raju EXTERNAL EXAMINER

HoD

Submitted for viva voce Examination held on _____________________

ACKNOWLEDGEMENT

Apart from the efforts of us, the success of any project depends largely on the

encouragement and guidelines of many others. We take this opportunity to express our gratitude

to the people who have been instrumental in the successful completion of this project. We take

this opportunity to express my profound gratitude and deep regard to my guide.

Dr. T. S. Mastan Rao, Associate Professor for his exemplary guidance, monitoring and

constant encouragement throughout the project work. The blessing, help and guidance given by

him shall carry us a long way in the journey of life on which we are about to embark.

We also take this opportunity to express a deep sense of gratitude to Project Review

Committee (PRC) Coordinators: Mr. B. P. Deepak Kumar, Mr. J. Narasimha Rao, Mr. K.

Murali, Dr. Suwarna Gothane and Mr. B. Ramji for their cordial support, valuable

information and guidance, which helped us in completing this task through various stages.

We are also thankful to Dr. K. Srujan Raju, Head, Department of Computer Science and

Engineering for providing encouragement and support for completing this project successfully.

We are obliged to Dr. A. Raji Reddy, Director for being cooperative throughout the

course of this project. We would like to express our sincere gratitude to Sri. Ch. Gopal Reddy,

Chairman for providing excellent infrastructure and a nice atmosphere throughout the course of

this project.

The guidance and support received from all the members of CMR Technical Campus

who contributed to the completion of the project. We are grateful for their constant support and

help.

Finally, we would like to take this opportunity to thank our family for their constant

encouragement, without which this assignment would not be completed. We sincerely

acknowledge and thank all those who gave support directly and indirectly in the completion of

this project.

P. RISHI SANMITRA (177R1A0548)

K. LALITHANJANA (177R1A0525)

V. V. SAI SOWMYA (177R1A0553)

ABSTRACT

The main purpose of this project is to design a system for the differently abled people to

communicate with others with ease. The objective is to design a Machine Learning model that

learns the different gestures made by differently abled people to converse using Sign Language.

The approach to the problem is to take a set of pictures of the gesture made and label these

pictures with the appropriate meaning of it. This approach allows the model to function in

multiple ways, because there are different standards of sign language in different geographical

locations, for example we have the American Standards of Sign Language and these standards

are different from that of the Indian Standards of Sign Language. This project allows us to train

the model as per the requirement, so we can train it on the American Standards as well as the

Indian Standards. The working principle is as follows; Initially we write some code to automate

the picture taking process, once the pictures have been taken we use the LabelImg software to

segregate these images into the appropriate labels. These labels are named in such a way that

they express the meaning of the gesture made. Once the labelling of the images has been done

we have two sets of files for each image taken, one which has the actual image in it and the other

being an XML file which contains information of where the model should be looking in the

image during the training process. Once these files are generated, the training process begins,

where the Machine is going to use a Deep Learning SSD ML algorithm to extract features from

the desired image. Finally after the model has been trained, it allows for the Sign Language

Detection part to begin. To achieve the detection we are using the TensorFlow Object Detection

module, here the extracted features from the images taken are passed onto the TensorFlow

module which is going to make comparisons with the real time video present in the frame. On

detection of any of these features it is going to generate a bounding box around the gesture and

make the prediction. The prediction is going to be the same as the label of the image, hence it is

very important to understand the gesture made so as to name the label correctly, a wrongly

named label could result in a wrong prediction made.

i

LIST OF FIGURES

FIGURE NO FIGURE NAME PAGE NO

Figure 4.1 Project Architecture 9

Figure 4.2 Use Case Diagram 11

Figure 4.3 Class Diagram 12

Figure 4.4 Sequence Diagram 13

Figure 4.5 Activity Diagram 14

ii

LIST OF SCREENSHOTS

SCREENSHOT NO SCREENSHOT NAME PAGE NO

Screenshot 6.1 LabelImg Software 24

Screenshot 6.2 Images for Training in Grayscale 25

Screenshot 6.3 Loss of Machine Learning Model 26

Screenshot 6.4 Loss at each Iteration 27

Screenshot 6.5 Evaluation Results and Evaluation Metrics 28

Screenshot 6.6 Gesture Recognition for No 29

Screenshot 6.7 Gesture Recognition for ILoveYou and No 30

iii

TABLE OF CONTENTS

ABSTRACT i

LIST OF FIGURES ii

LIST OF SCREENSHOTS iii

1. INTRODUCTION 1

1.1 PROJECT SCOPE 1

1.2 PROJECT PURPOSE 1

1.3 PROJECT FEATURES 1

2. LITERATURE SURVEY 2

3. SYSTEM ANALYSIS 4

3.1 PROBLEM DEFINITION 4

3.2 EXISTING SYSTEM 4

3.2.1 LIMITATIONS OF EXISTING SYSTEM 5

3.3 PROPOSED SYSTEM 5

3.3.1 ADVANTAGES OF PROPOSED SYSTEM 5

3.4 FEASIBILITY STUDY 6

3.4.1 ECONOMIC FEASIBILITY 6

3.4.2 TECHNICAL FEASIBILITY 7

3.4.3 SOCIAL FEASIBILITY 7

3.5 HARDWARE & SOFTWARE REQUIREMENTS 7

3.5.1 HARDWARE REQUIREMENTS 7

3.5.2 SOFTWARE REQUIREMENTS 8

4. ARCHITECTURE 9

4.1 PROJECT ARCHITECTURE 9

4.2 DESCRIPTION 9

iv

4.3 USE CASE DIAGRAM 11

4.4 CLASS DIAGRAM 12

4.5 SEQUENCE DIAGRAM 13

4.6 ACTIVITY DIAGRAM 14

5. IMPLEMENTATION 15

5.1 SAMPLE CODE 15

6. SCREENSHOTS 24

7. TESTING 31

7.1 INTRODUCTION TO TESTING 31

7.2 TYPES OF TESTING 31

7.2.1 UNIT TESTING 31

7.2.2 INTEGRATION TESTING 31

7.2.3 FUNCTIONAL TESTING 32

7.3 TEST CASES 32

7.3.1 OBJECT DETECTION 32

8. CONCLUSION & FUTURE SCOPE 33

8.1 PROJECT CONCLUSION 33

8.2 FUTURE SCOPES 33

9. BIBLIOGRAPHY 34

9.1 REFERENCES 34

9.2 WEBSITES 35

v

1. INTRODUCTION

ML BASED REAL TIME SIGN LANGUAGE DETECTION

1. INTRODUCTION

1.1 PROJECT SCOPE

The project title as “ML Based Real Time Sign Language Detection” is an application

using which a differently abled person can communicate with the people around them with ease.

Using this application, the user need not hire an interpreter to help them communicate with

others. Using this application, the opposite person can record what the user is trying to convey

and get the translation for the gestures made in text format. Using this application the user is able

to communicate better with others in their day to day lives.

1.2 PROJECT PURPOSE

The project is designed to facilitate a better lifestyle to the differently abled people.

Through this project we aim at providing a platform for the differently abled people to

communicate with others irrespective of whether they know sign language or not. We aim at

diminishing the boundaries created by various medical conditions that restrict the differently

abled people to communicate with others. This not only makes them independent, but also

provides them with a better lifestyle.

1.3 PROJECT FEATURES
The main core feature of this project is that it detects the sign as a complete word instead

of a series of alphabets. The other core feature of this project is giving labels to the gesture made.

Since we give labels to the gestures made, it can be labelled using any language, giving us an

opportunity to include the multi-language feature.

1

2. LITERATURE SURVEY

ML BASED REAL TIME SIGN LANGUAGE DETECTION

2. LITERATURE SURVEY
The first approach in relation to sign language recognition was by Bergh in 2011 [2].

Haar wavelets and database searching were employed to build a hand gesture recognition system.

Although this system gives good results, it only considers six classes of gestures. Many types of

research have been carried out on different sign languages from different countries. For example,

a BSL recognition model, which understands finger-spelled signs from a video, was built [3]. As

Initial, a histogram of gradients (HOG) was used to recognize letters, and then, the system used

hidden Markov models (HMM) to recognize words. In another paper, a system was built to

recognize sentences made of 3-5 words. Each word ought to be one of 19 signs in their

thesaurus. Hidden Markov models have also been used on extracted features [4].

In 2011, a real time American Sign Language recognition model was proposed utilizing

Gabor filter and random forest [5]. A dataset of colour and depth images for 24 different

alphabets was created. An accuracy of 75% was achieved utilizing both colour and complexity

images, and 69% using depth images only. Depth images were only used due to changes in the

illumination and differences in the skin pigment. In 2013, a multilayered random forest was also

used to build a real time ASL model [6]. The system recognizes signs through applying random

forest classifiers to the combined angle vector. An accuracy of 90% was achieved by testing one

of the training images, and an accuracy of 70% was achieved for a new image. An American

Sign Language alphabet recognition system was first built by localizing hand joint gestures using

a hierarchical mode seeking and random forest method [7]. An accuracy of 87% was achieved

for the training, and accuracy of 57% when testing new images. In 2013, the Karhunen-Loeve

Transform was used to classify gesture images of one hand into 10 classes [8]. These were

translated and the axes were rotated to distinguish a modern coordinate model by applying edge

detection, hand cropping, and skin filter techniques. An accuracy of (96%) was achieved.

Sharma [9] characterized each colour channel after background deduction and noise

elimination using (SVM and k-NN) classifiers, followed by a contour trace. An accuracy of

(62.3%) was gained by using (SVM) as a classifier. Starner, Weaver & Pentland tracked hand

movements by using a (3D) glove and an (HMM) model. This model can gain (3D) information

from the hands regardless of the spatial direction. An accuracy of (99.2%) was achieved on the

2

ML BASED REAL TIME SIGN LANGUAGE DETECTION

test dataset. HMM utilizes time series datasets to follow hands movement and recognize them

according to where the hand has been [10]. All the research that has been discussed above used

linear classifiers, which are relatively simple and only require attribute extraction and

pre-processing to be successful.

Another approach is to use deep learning techniques. This approach was used to build a

model that recognizes hand gestures in a continual video stream utilizing DBN models [11]. An

accuracy of over 99% was achieved. Another research used a deep learning technique, whereby a

feed forward neural network was used to classify a sign. Many image pre-processing methods

have been used, such as background subtraction, image normalization, image segmentation and

contrast adjustment. In addition, a principal component analysis (PCA) and Gabor filters have

been used for feature extraction. An accuracy of 98.5% was achieved with this method [12]. All

the works discussed above depended on the extraction of the hand before it is fed to a network.

However, a research was done on different sign languages from different countries [13], and this

was the most relevant work for the current study. An Italian Sign Language recognition system

was built using CNNs to classify 20 Italian gestures. A Microsoft Kinect was applied to full body

images of people, whereby the Kinect was able to capture depth images. Only the depth images

were used for training and an accuracy of 91.7% was achieved. However, it was mentioned that

the test dataset could be in the training dataset (and/or) the validation dataset [13]. The structural

design of the system consisted of two convolutional neural networks, one to extract higher body

features and one to extract hand features. The data set, looking at People 2014, was used [14].

The depth map images were also used with a data set involving 20 Italian sign motions. The

validation was 0.789675, and the final was 0.788804.

3

3. SYSTEM ANALYSIS

ML BASED REAL TIME SIGN LANGUAGE DETECTION

3. SYSTEM ANALYSIS

SYSTEM ANALYSIS
System Analysis is the important phase in the system development process. The System

is studied to the minute details and analyzed. The system analyst plays an important role of an

interrogator and dwells deep into the working of the present system. In analysis, a detailed study

of these operations performed by the system and their relationships within and outside the system

is done. A key question considered here is, “What must be done to solve the problem?”. The

system is viewed as a whole and the inputs to the system are identified. Once analysis is

completed the analyst has a firm understanding of what is to be done.

3.1 PROBLEM DEFINITION
A detailed study of the process must be made by various techniques like interviews,

questionnaires etc. The data collected by these sources must be scrutinized to arrive at a

conclusion. The conclusion is an understanding of how the system functions. This system is

called the existing system. Now the existing system is subjected to close study and problem areas

are identified. The designer now functions as a problem solver and tries to sort out the difficulties

that the user faces. The model is built in such a way that it addresses the difficulties faced by the

user. Consider the example, there are two users, the first one who needs a model which also

allows him to move around in public and the second one who needs a model to be trained only to

function inside his house, based on these requirements a model is generated and tested to see if

the user is satisfied with the application.

3.2 EXISTING SYSTEM
We have some systems, the first one being the age-old Translators and we also have a

system where the sign language can be converted to text, but this only is done for singular

alphabets. Translators are not available in abundance thus making it very expensive to have one

4

ML BASED REAL TIME SIGN LANGUAGE DETECTION

available at all times, and the existing digital translators are very slow since every alphabet has to

be gestured out and the amount of time it would take to just form a simple sentence would be a

lot.

3.2.1 LIMITATIONS OF EXISTING SYSTEM

● These existing technologies are very restricted.

● They provide translations only on a particular standard.

● They can be very expensive.

To avoid all these limitations and make the working more accurate the system needs to be

implemented efficiently.

3.3 PROPOSED SYSTEM

Initially we take pictures of the gesture made, once the pictures have been taken we use

the LabelImg software to segregate these images into the appropriate labels. Once the labelling

of the images has been done we have two sets of files for each image taken, one which has the

actual image in it and the other being an XML file which contains information of where the

model should be looking in the image during the training process. The model is trained on a

Deep Learning SSD ML algorithm to extract features from the desired image.To achieve the

detection we are using the TensorFlow Object Detection module, here the extracted features

from the images taken are passed onto the TensorFlow module which is going to make

comparisons with the real time video present in the frame.On detection of any of these features it

is going to generate a prediction of the meaning which is the same as the name of the label.

3.3.1 ADVANTAGES OF THE PROPOSED SYSTEM

The system is very simple in design and to implement. The system requires very low

system resources and the system will work in almost all configurations. It has the following

features.

5

ML BASED REAL TIME SIGN LANGUAGE DETECTION

● The main Advantage is that this model is much more efficient than the existing

technologies.

● The system allows the user to train the model as per their set standards.

● The user can provide the images of the gestures and also provide the meaning of the

gestures for labelling to improve the accuracy of the predictions made by the model.

3.4 FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and a business proposal is put forth

with a very general plan for the project and some cost estimates. During system analysis the

feasibility study of the proposed system is to be carried out. This is to ensure that the proposed

system is not a burden to the user.

Three key considerations involved in the feasibility analysis are

● Economic Feasibility

● Technical Feasibility

● Social Feasibility

3.4.1 ECONOMIC FEASIBILITY

The developing system must be justified by cost and benefit. Criteria to ensure that effort

is concentrated on a project, which will give the user the best quality of life possible. One of the

factors, which affect the development of a new system, is the cost it would require.

The following are some of the important financial questions asked during preliminary

investigation:

● The costs conduct a full system investigation.

● The cost of the hardware and software.

● The benefits in the form of reduced costs or fewer costly errors.

6

ML BASED REAL TIME SIGN LANGUAGE DETECTION

Since the system is developed as part of project work, there is no manual cost to spend

for the proposed system. Also, all the resources are already available, it gives an indication that

the system is economically possible for development.

3.4.2 TECHNICAL FEASIBILITY

This study is carried out to check the technical feasibility, that is, the technical

requirements of the system. Any system developed must not have a high demand on the available

technical resources. The developed system must have a modest requirement, as only minimal or

null changes are required for implementing this system.

3.4.3 BEHAVIORAL FEASIBILITY

This includes the following questions:

● Is there sufficient support for the users?

● Will the proposed system cause harm?

The project would be beneficial because it satisfies the objectives when developed and

installed. All behavioral aspects are considered carefully and conclude that the project is

behaviorally feasible.

3.5 HARDWARE & SOFTWARE REQUIREMENTS

3.5.1 HARDWARE REQUIREMENTS

Hardware interfaces specify the logical characteristics of each interface between the

software product and the hardware components of the system. The following are some hardware

requirements.

● Processor : Pentium V or higher

● RAM : 4 GB or higher

● Space on Hard Disk : Minimum 10 GB

● High Quality Camera

7

ML BASED REAL TIME SIGN LANGUAGE DETECTION

3.5.2 SOFTWARE REQUIREMENTS

Software Requirements specifies the logical characteristics of each interface and software

components of the system. The following are some software requirements:

● Operating System : Windows 10, Windows 8

● Technologies : TensorFlow, OpenCV, Deep Learning SSD Module

● Language : Python

● Jupyter Notebook

● LabelImg Software

8

4. ARCHITECTURE

ML BASED REAL TIME SIGN LANGUAGE DETECTION

4. ARCHITECTURE

4.1 PROJECT ARCHITECTURE

This project architecture describes how the application is going to function. The detailed

architecture is explained below.

Figure 4.1: Project Architecture for ML Based Real Time Sign Language Detection

4.2 DESCRIPTION

● Dataset formed by Collecting Images from the PC Camera: A set of 20 images for

each gesture/sign were taken using the PC Camera for training as well as testing the ML

model.

● Labelling the Images using LabelImg: Each image collected above was labelled using

the LabelImg software. The LabelImg software is used for graphically labelling the

images that is further used when recognizing the images. It is important to understand the

gesture made and give the correct label to it, as a wrong label can lead to

miscommunication.

9

ML BASED REAL TIME SIGN LANGUAGE DETECTION

● SSD Algorithm for Feature Extraction: The ML model was trained using the Deep

Learning SSD ML Algorithm. SSD (Single Shot Detection) algorithm is designed for

object detection in real-time. The SSD architecture is a single convolution network that

learns to predict bounding box locations and classify these locations in one pass. Hence,

SSD can be trained end-to-end.

● TFOD Module for Detecting: The ML model was tested using the TensorFlow Object

Detection API. The TensorFlow Object Detection API is an open-source framework built

on top of TensorFlow that makes it easy to construct, train and deploy object detection

models. TensorFlow bundles together Machine Learning and Deep Learning models and

algorithms.

● Real Time Video Stream: A real time video stream for the gestures being made which is

captured using the PC Camera is given as an input to the ML model to know what

gestures are being made.

● Text Output: The meaning of the gestures being made is shown in text form with a

bounding box around the gesture. This text is the same as the label given to the

gesture/sign while labelling the images using LabelImg.

10

ML BASED REAL TIME SIGN LANGUAGE DETECTION

4.3 USE CASE DIAGRAM

In the use case diagram, we basically have four actors, namely: the User, TensorFlow,

LabelImg and the Database. The user has the following methods, set labels and show gestures.

The TensorFlow module has only one method, that is, gesture recognition. The LabelImg

software has the following methods, set labels and display labels. The database has only one

method, that is, get gestures.

Figure 4.2: Use Case Diagram for ML Based Real Time Sign Language Detection

11

ML BASED REAL TIME SIGN LANGUAGE DETECTION

4.4 CLASS DIAGRAM

Class Diagram is a collection of classes and objects.

Figure 4.3: Class Diagram for ML Based Real Time Sign Language Detection

12

ML BASED REAL TIME SIGN LANGUAGE DETECTION

4.5 SEQUENCE DIAGRAM

The sequence diagram shows the sequence in which different tasks are being carried out

by the actors.

Figure 4.4: Sequence Diagram for ML Based Real Time Sign Language Detection

13

ML BASED REAL TIME SIGN LANGUAGE DETECTION

4.6 ACTIVITY DIAGRAM

Activity Diagram describes the flow of activity states.

Figure 4.5: Activity Diagram for ML Based Real Time Sign Language Detection

14

5. IMPLEMENTATION

ML BASED REAL TIME SIGN LANGUAGE DETECTION

5. IMPLEMENTATION

5.1 SAMPLE CODE

#Creation and Activation of Virtual Environment

python -m venv tfod

.\tfod\Scripts\activate

#Installing Dependencies and Adding Virtual Environment to Jupyter Notebook

python -m pip install --upgrade pip

pip install ipykernel

python -m ipykernel install --user --name=tfod

Automated Image Collection for Dataset

!pip install opencv-python

import cv2 #Import opencv

import uuid #Import uuid

import os #Import Operating System

import time #Import Time

labels = ['Hello', 'ThankYou', 'Yes', 'No', 'ILoveYou'] # Label Creation

number_imgs = 20 #Number of Images to be taken

IMAGES_PATH = os.path.join('Tensorflow', 'workspace', 'images', 'collectedimages')

if not os.path.exists(IMAGES_PATH):

!mkdir {IMAGES_PATH}

for label in labels:

path = os.path.join(IMAGES_PATH, label)

if not os.path.exists(path):

!mkdir {path}

15

ML BASED REAL TIME SIGN LANGUAGE DETECTION

#Image Collection

for label in labels:

cap = cv2.VideoCapture(0)

print('Collecting images for {}'.format(label))

time.sleep(5)

for imgnum in range(number_imgs):

print('Collecting image {}'.format(imgnum))

ret, frame = cap.read()

imgname = os.path.join(IMAGES_PATH,label,label+'.'+'{}.jpg'.format(str(uuid.uuid1())))

cv2.imwrite(imgname, frame)

cv2.imshow('frame', frame)

time.sleep(2)

if cv2.waitKey(1) & 0xFF == ord('q'):

break

cap.release()

cv2.destroyAllWindows()

Installing Dependencies for LabelImg

!pip install --upgrade pyqt5 lxml

LABELIMG_PATH = os.path.join('Tensorflow', 'labelimg')

if not os.path.exists(LABELIMG_PATH):

!mkdir {LABELIMG_PATH}

!git clone https://github.com/tzutalin/labelImg {LABELIMG_PATH}

!cd {LABELIMG_PATH} && pyrcc5 -o libs/resources.py resources.qrc

16

ML BASED REAL TIME SIGN LANGUAGE DETECTION

!cd {LABELIMG_PATH} && python labelImg.py

Training and Detection Module:

import os

CUSTOM_MODEL_NAME = 'my_ssd_mobnet'

PRETRAINED_MODEL_NAME = 'ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8'

PRETRAINED_MODEL_URL =
'http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite
_320x320_coco17_tpu-8.tar.gz'

TF_RECORD_SCRIPT_NAME = 'generate_tfrecord.py'

LABEL_MAP_NAME = 'label_map.pbtxt'

paths = {

'WORKSPACE_PATH': os.path.join('Tensorflow', 'workspace'),

'SCRIPTS_PATH': os.path.join('Tensorflow','scripts'),

'APIMODEL_PATH': os.path.join('Tensorflow','models'),

'ANNOTATION_PATH': os.path.join('Tensorflow', 'workspace','annotations'),

'IMAGE_PATH': os.path.join('Tensorflow', 'workspace','images'),

'MODEL_PATH': os.path.join('Tensorflow', 'workspace','models'),

'PRETRAINED_MODEL_PATH': os.path.join('Tensorflow', 'workspace','pre-trained-models'),

'CHECKPOINT_PATH': os.path.join('Tensorflow',
'workspace','models',CUSTOM_MODEL_NAME),

'OUTPUT_PATH': os.path.join('Tensorflow',
'workspace','models',CUSTOM_MODEL_NAME, 'export'),

'TFJS_PATH':os.path.join('Tensorflow', 'workspace','models',CUSTOM_MODEL_NAME,
'tfjsexport'),

'TFLITE_PATH':os.path.join('Tensorflow', 'workspace','models',CUSTOM_MODEL_NAME,
'tfliteexport'),

'PROTOC_PATH':os.path.join('Tensorflow','protoc')

}

17

http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz
http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz

ML BASED REAL TIME SIGN LANGUAGE DETECTION

files = {

'PIPELINE_CONFIG':os.path.join('Tensorflow', 'workspace','models',
CUSTOM_MODEL_NAME, 'pipeline.config'),

'TF_RECORD_SCRIPT': os.path.join(paths['SCRIPTS_PATH'],
TF_RECORD_SCRIPT_NAME),

'LABELMAP': os.path.join(paths['ANNOTATION_PATH'], LABEL_MAP_NAME)

}

for path in paths.values():

if not os.path.exists(path):

!mkdir {path}

!pip install wget

import wget

if not os.path.exists(os.path.join(paths['APIMODEL_PATH'], 'research', 'object_detection')):

!git clone https://github.com/tensorflow/models {paths['APIMODEL_PATH']}

Installing TensorFlow

url="https://github.com/protocolbuffers/protobuf/releases/download/v3.15.6/protoc-3.15.6-win64

.zip"

wget.download(url)

!move protoc-3.15.6-win64.zip {paths['PROTOC_PATH']}

!cd {paths['PROTOC_PATH']} && tar -xf protoc-3.15.6-win64.zip

os.environ['PATH'] += os.pathsep + os.path.abspath(os.path.join(paths['PROTOC_PATH'],

'bin'))

!cd Tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=.

&& copy object_detection\\packages\\tf2\\setup.py setup.py && python setup.py build &&

python setup.py install

18

ML BASED REAL TIME SIGN LANGUAGE DETECTION

!cd Tensorflow/models/research/slim && pip install -e .

Verification Script For Tensorflow Installation

VERIFICATION_SCRIPT = os.path.join(paths['APIMODEL_PATH'], 'research',
'object_detection', 'builders', 'model_builder_tf2_test.py')

!python {VERIFICATION_SCRIPT}

Training Process

import object_detection

wget.download(PRETRAINED_MODEL_URL)

!move PRETRAINED_MODEL_NAME+'.tar.gz'}{paths['PRETRAINED_MODEL_PATH']}

!cd{paths['PRETRAINED_MODEL_PATH']} &&
tar-zxvf{PRETRAINED_MODEL_NAME+'.tar.gz'}

labels = [{'name':'Hello', 'id':1}, {'name':'ThankYou', 'id':2}, {'name':'Yes', 'id':3}, {'name':'No',
'id':4}, {'name':'ILoveYou', 'id':5}]

with open(files['LABELMAP'], 'w') as f:

for label in labels:

f.write('item { \n')

f.write('\tname:\'{}\'\n'.format(label['name']))

f.write('\tid:{}\n'.format(label['id']))

f.write('}\n')

if not os.path.exists(files['TF_RECORD_SCRIPT']):

!git clone https://github.com/nicknochnack/GenerateTFRecord {paths['SCRIPTS_PATH']}

!python {files['TF_RECORD_SCRIPT']} -x {os.path.join(paths['IMAGE_PATH'], 'train')} -l
{files['LABELMAP']} -o {os.path.join(paths['ANNOTATION_PATH'], 'train.record')}

!python {files['TF_RECORD_SCRIPT']} -x {os.path.join(paths['IMAGE_PATH'], 'test')} -l
{files['LABELMAP']} -o {os.path.join(paths['ANNOTATION_PATH'], 'test.record')}

!copy {os.path.join(paths['PRETRAINED_MODEL_PATH'],
PRETRAINED_MODEL_NAME, 'pipeline.config')}
{os.path.join(paths['CHECKPOINT_PATH'])}

19

ML BASED REAL TIME SIGN LANGUAGE DETECTION

import tensorflow as tf

from object_detection.utils import config_util

from object_detection.protos import pipeline_pb2

from google.protobuf import text_format

config = config_util.get_configs_from_pipeline_file(files['PIPELINE_CONFIG'])

pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()

with tf.io.gfile.GFile(files['PIPELINE_CONFIG'], "r") as f:

proto_str = f.read()

text_format.Merge(proto_str, pipeline_config)

pipeline_config.model.ssd.num_classes = len(labels)

pipeline_config.train_config.batch_size = 4

pipeline_config.train_config.fine_tune_checkpoint =
os.path.join(paths['PRETRAINED_MODEL_PATH'], PRETRAINED_MODEL_NAME,
'checkpoint', 'ckpt-0')

pipeline_config.train_config.fine_tune_checkpoint_type = "detection"

pipeline_config.train_input_reader.label_map_path= files['LABELMAP']

pipeline_config.train_input_reader.tf_record_input_reader.input_path[:] =
[os.path.join(paths['ANNOTATION_PATH'], 'train.record')]

pipeline_config.eval_input_reader[0].label_map_path = files['LABELMAP']

pipeline_config.eval_input_reader[0].tf_record_input_reader.input_path[:] =
[os.path.join(paths['ANNOTATION_PATH'], 'test.record')]

config_text = text_format.MessageToString(pipeline_config)

with tf.io.gfile.GFile(files['PIPELINE_CONFIG'], "wb") as f:

f.write(config_text)

TRAINING_SCRIPT = os.path.join(paths['APIMODEL_PATH'], 'research', 'object_detection',
'model_main_tf2.py')

command = "python {} --model_dir={} --pipeline_config_path={}
--num_train_steps=2000".format(TRAINING_SCRIPT,
paths['CHECKPOINT_PATH'],files['PIPELINE_CONFIG'])

20

ML BASED REAL TIME SIGN LANGUAGE DETECTION

print(command) # Copy the printed command and run in CMD of virtual environment

#Evaluation of the Model to know Loss Metrics and Confidence.

command = "python {} --model_dir={} --pipeline_config_path={}
--checkpoint_dir={}".format(TRAINING_SCRIPT,
paths['CHECKPOINT_PATH'],files['PIPELINE_CONFIG'], paths['CHECKPOINT_PATH'])

print(command) # Copy Command and run in CMD of Virtual Environment

#Load Model From Checkpoint

import os

import tensorflow as tf

from object_detection.utils import label_map_util

from object_detection.utils import visualization_utils as viz_utils

from object_detection.builders import model_builder

from object_detection.utils import config_util

configs = config_util.get_configs_from_pipeline_file(files['PIPELINE_CONFIG'])

detection_model = model_builder.build(model_config=configs['model'], is_training=False)

ckpt = tf.compat.v2.train.Checkpoint(model=detection_model)

ckpt.restore(os.path.join(paths['CHECKPOINT_PATH'], 'ckpt-3')).expect_partial()

@tf.function

def detect_fn(image):

image, shapes = detection_model.preprocess(image)

prediction_dict = detection_model.predict(image, shapes)

detections = detection_model.postprocess(prediction_dict, shapes)

return detections

import cv2

import numpy as np

from matplotlib import pyplot as plt

%matplotlib inline

category_index = label_map_util.create_category_index_from_labelmap(files['LABELMAP'])

21

ML BASED REAL TIME SIGN LANGUAGE DETECTION

Detection In Real Time Using Webcam

cap = cv2.VideoCapture(0)

width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))

height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

while cap.isOpened():

ret, frame = cap.read()

image_np = np.array(frame)

input_tensor = tf.convert_to_tensor(np.expand_dims(image_np, 0), dtype=tf.float32)

detections = detect_fn(input_tensor)

num_detections = int(detections.pop('num_detections'))

detections = {key: value[0, :num_detections].numpy()

for key, value in detections.items()}

detections['num_detections'] = num_detections

detections['detection_classes'] = detections['detection_classes'].astype(np.int64)

label_id_offset = 1

image_np_with_detections = image_np.copy()

viz_utils.visualize_boxes_and_labels_on_image_array(

image_np_with_detections,

detections['detection_boxes'],

detections['detection_classes']+label_id_offset,

detections['detection_scores'],

category_index,

use_normalized_coordinates=True,

max_boxes_to_draw=5,

min_score_thresh=.7,

agnostic_mode=False)

22

ML BASED REAL TIME SIGN LANGUAGE DETECTION

cv2.imshow('object detection', cv2.resize(image_np_with_detections, (800, 600)))

if cv2.waitKey(10) & 0xFF == ord('q'):

cap.release()

cv2.destroyAllWindows()

break

23

6. SCREENSHOTS

ML BASED REAL TIME SIGN LANGUAGE DETECTION

6. SCREENSHOTS

6.1 LABELLING IMAGES USING LABELIMG

This is how the images are labelled using the LabelImg software.

Screenshot 6.1: LabelImg Software

24

ML BASED REAL TIME SIGN LANGUAGE DETECTION

6.2 GRAYSCALE

All the images were converted into gray scale images as shown in Screenshot 6.2., for

training the ML model.

Screenshot 6.2: Images for Training in Grayscale

25

ML BASED REAL TIME SIGN LANGUAGE DETECTION

6.3 LOSS OF MACHINE LEARNING MODEL - GRAPH

The loss at each iteration of our machine learning model has been decreasing which

indicates a better accuracy of model for detection. The loss of our model is shown in the below

Screenshot 6.3.

Screenshot 6.3: Loss of the Machine Learning Model

26

ML BASED REAL TIME SIGN LANGUAGE DETECTION

6.4 LOSS OF MACHINE LEARNING MODEL AT EACH STEP

The below screenshot shows the loss incurred at each step while training the model. The

lowest loss recorded is 0.133 at step 9400 and at step 9700.

Screenshot 6.4: Loss at each Iteration

27

ML BASED REAL TIME SIGN LANGUAGE DETECTION

6.5 EVALUATION METRIC

The below screenshot represents the evaluation results and evaluation metrics for a

10000 step machine learning model. An evaluation metric consists of the average precision and

average recall.

Screenshot 6.5: Evaluation Results and Evaluation Metrics

28

ML BASED REAL TIME SIGN LANGUAGE DETECTION

6.6 SINGLE GESTURE RECOGNITION

Screenshot 6.6 shows the recognition of the sign ‘No’ by the ML model with an accuracy

of 90%.

Screenshot 6.6: Gesture Recognition for No

29

ML BASED REAL TIME SIGN LANGUAGE DETECTION

6.7 TWO GESTURE RECOGNITION

Two gestures can also be recognised simultaneously. In the below screenshot we can see

that both the gestures are being recognised without any difficulty.

Screenshot 6.7: Gesture Recognition for ILoveYou and No

30

7. TESTING

ML BASED REAL TIME SIGN LANGUAGE DETECTION

7. TESTING

7.1 INTRODUCTION TO TESTING

The purpose of testing is to discover errors. Testing is the process of trying to discover

every conceivable fault or weakness in a work product. It provides a way to check the

functionality of components, subassemblies, assemblies and/or a finished product. It is the

process of exercising software with the intent of ensuring that the Software system meets its

requirements and user expectations and does not fail in an unacceptable manner. There are

various types of tests. Each test type addresses a specific testing requirement.

7.2 TYPES OF TESTING

7.2.1 UNIT TESTING

Unit testing involves the design of test cases that validate that the internal program logic

is functioning properly, and that program inputs produce valid outputs. All decision branches and

internal code flow should be validated. It is the testing of individual software units of the

application. It is done after the completion of an individual unit before integration. This is a

structural testing that relies on knowledge of its construction and is invasive. Unit tests perform

basic tests at component level and test a specific business process, application, and/or system

configuration. Unit tests ensure that each unique path of a business process performs accurately

to the documented specifications and contains clearly defined inputs and expected results.

7.2.2 INTEGRATION TESTING

Integration tests are designed to test integrated software components to determine if they

actually run as one program. Testing is event driven and is more concerned with the basic

outcome of screens or fields. Integration tests demonstrate that although the components were

individually satisfactory, as shown by successfully unit testing, the combination of components is

correct and consistent. Integration testing is specifically aimed at exposing the problems that

arise from the combination of components.

31

ML BASED REAL TIME SIGN LANGUAGE DETECTION

7.2.3 FUNCTIONAL TESTING

Functional tests provide systematic demonstrations that functions tested are available as

specified by the business and technical requirements, system documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key

functions, or special test cases. In addition, systematic coverage pertaining to identifying

Business process flows; data fields, predefined processes.

7.3 TEST CASES
7.3.1 OBJECT DETECTION

Test Case ID Test Case Name Purpose Test Case Output

1 Object
detection

To check if the
gesture is
being
recognized or
not.

A video stream
consisting of a
Person making a
gesture “No”is
given as input.

A text feedback
“No” with a
bounding box
around the gesture
is given as output.

2 Object
detection

To check if the
gesture is
being
recognized or
not.

A video stream
consisting of a
Person making a
gesture “No” and
“ILoveYou” is
given as input
simultaneously.

A text feedback
“No” and
“ILoveYou” with
a bounding box
around the gesture
is given as output.

32

8. CONCLUSION

ML BASED REAL TIME SIGN LANGUAGE DETECTION

8. CONCLUSION & FUTURE ENHANCEMENTS

8.1 PROJECT CONCLUSION

Through this project, we aim at providing a platform for the differently abled

people to communicate with others irrespective of whether they know sign language or

not. The interface of the platform is very simple making it very easy to use. Finally, we

would like to say that we aim at diminishing the boundaries created by various medical

conditions that restrict differently abled people to communicate with others and improve

their quality of life.

8.2 FUTURE ENHANCEMENTS

There is a lot of scope for this project, since we have the ability to label these

images, we can label the gestures in any language required, allowing the user to

communicate with others irrespective of the language boundaries.

33

9. BIBLIOGRAPHY

ML BASED REAL TIME SIGN LANGUAGE DETECTION

9. BIBLIOGRAPHY

9.1 REFERENCES

[1]. Garcia, B., & Viesca, S. A. (2016). Real-time American sign language recognition with

convolutional neural networks. Convolutional Neural Networks for Visual Recognition, 2,

225-232.

[2]. Van den Bergh, M., & Van Gool, L. (2011, January). Combining RGB and ToF cameras for

real-time 3D hand gesture interaction. In 2011 IEEE workshop on applications of computer

vision (WACV) (pp. 66-72). IEEE.

[3]. Liwicki, S., & Everingham, M. (2009, June). Automatic recognition of fingerspelled words

in british sign language. In 2009 IEEE computer society conference on computer vision and

pattern recognition workshops (pp. 50-57). IEEE.

[4]. Zafrulla, Z., Brashear, H., Starner, T., Hamilton, H., & Presti, P. (2011, November).

American sign language recognition with the kinect. In Proceedings of the 13th international

conference on multimodal interfaces (pp. 279-286).

[5]. Pugeault, N., & Bowden, R. (2011, November). Spelling it out: Real-time ASL

fingerspelling recognition. In 2011 IEEE International conference on computer vision workshops

(ICCV workshops) (pp. 1114-1119). IEEE.

[6]. Kuznetsova, A., Leal-Taixé, L., & Rosenhahn, B. (2013). Real-time sign language

recognition using a consumer depth camera. In Proceedings of the IEEE International

Conference on Computer Vision Workshops (pp. 83-90).

[7]. Dong, C., Leu, M. C., & Yin, Z. (2015). American sign language alphabet recognition using

microsoft kinect. In Proceedings of the IEEE conference on computer vision and pattern

recognition workshops (pp. 44-52).

[8]. Singha, J., & Das, K. (2013). Hand gesture recognition based on Karhunen-Loeve transform.

arXiv preprint arXiv:1306.2599.

34

ML BASED REAL TIME SIGN LANGUAGE DETECTION

[9]. Sharma, R., Nemani, Y., Kumar, S., Kane, L., & Khanna, P. (2013, July). Recognition of

single handed sign language gestures using contour tracing descriptor. In Proceedings of the

World Congress on Engineering (Vol. 2, pp. 3-5).

[10]. Starner, T., Weaver, J., & Pentland, A. (1998). Realtime american sign language recognition

using desk and wearable computer based video. IEEE Transactions on pattern analysis and

machine intelligence, 20(12), 1371-1375.

[11]. Suk, H. I., Sin, B. K., & Lee, S. W. (2010). Hand gesture recognition based on dynamic

Bayesian network framework. Pattern recognition, 43(9), 3059- 3072.

[12]. Admasu, Y. F., & Raimond, K. (2010, November). Ethiopian sign language recognition

using Artificial Neural Network. In 2010 10th International Conference on Intelligent Systems

Design and Applications (pp. 995-1000). IEEE.

[13]. Pigou, L., Dieleman, S., Kindermans, P. J., & Schrauwen, B. (2014, September). Sign

language recognition using convolutional neural networks. In European Conference on

Computer Vision (pp. 572-578). Springer, Cham.

[14]. Escalera, S., Baró, X., Gonzalez, J., Bautista, M. A., Madadi, M., Reyes, M., ... & Guyon, I.

(2014, September). Chalearn looking at people challenge 2014: Dataset and results. In European

Conference on Computer Vision (pp. 459-473). Springer, Cham.

[15]. https://github.com/Rishi-Sanmitra/RealTimeSignLanguageDetection - Project location on

GitHub.

9.2 WEBSITES

● www.w3schools.com

● www.towardsdatascience.com

● www.stackoverflow.com

● www.wikipedia.com

● www.pyimagesearch.com

35

https://github.com/Rishi-Sanmitra/RealTimeSignLanguageDetection
http://www.w3schools.com
http://www.towardsdatascience.com
http://www.stackoverflow.com
http://www.wikipedia.com

--

Q.Trrtif icatr

Editor-in-Chief (IJRESM)
--
-
-
--

by

P. Rishi Sanmitra
has been published in

Volume 4, lssue 6, June 2021
in

International Journal of Research in

Engineering, Science and Management

All the best for your future endeavors

Machine Learning Based Real Time Sign Language Detection

It is here by certified that the manuscript entitled

SJIF Impact Factor: 4.308

--

Q.Trrtif icatr

Editor-in-Chief (IJRESM)
--
-
-
--

by

V. V. Sai Sowmya
has been published in

Volume 4, lssue 6, June 2021
in

International Journal of Research in

Engineering, Science and Management

All the best for your future endeavors

Machine Learning Based Real Time Sign Language Detection

It is here by certified that the manuscript entitled

SJIF Impact Factor: 4.308

--

Q.Trrtif icatr

Editor-in-Chief (IJRESM)
--
-
-
--

by

K. Lalithanjana
has been published in

Volume 4, lssue 6, June 2021
in

International Journal of Research in

Engineering, Science and Management

All the best for your future endeavors

Machine Learning Based Real Time Sign Language Detection

It is here by certified that the manuscript entitled

SJIF Impact Factor: 4.308

International Journal of Research in Engineering, Science and Management

Volume 4, Issue 6, June 2021

https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: lalithanjanakollipara@gmail.com

137

Abstract: In this paper, a real time ML based system was built

for the Sign Language Detection using images that have been

captured with the help of a PC camera. The main purpose of this

project is to design a system for the differently abled people to

communicate with others with ease. This model is one of the first

models to detect signs irrespective of their sign language standards

(i.e., the American Standard or the Indian Standard). The existing

digital translators are very slow since every alphabet has to be

gestured out and the amount of time it would take to just form a

simple sentence would be a lot. This model, which was trained

using the SSD ML Algorithm, overcomes the above problem by

directly recognizing the signs as words instead of alphabets. This

model was trained using a set of 20 images for a particular sign in

different conditions such as different lighting, different skin tones,

backgrounds, etc., in order to increase the accuracy of detecting

the gesture. The system displayed a high accuracy for all the

datasets when new test data, which had not been used in the

training, were introduced. The results have shown a high accuracy

of 85% for the sign detection.

Keywords: Deep Learning SSD ML algorithm, LabelImg

software, real time, TensorFlow object detection module.

1. Introduction

A very few people know how to communicate using sign

language as it is not a mandatory language to learn. This makes

it difficult for differently abled people to communicate with

others.

The most common means to communicate with them is with

the help of human interpreters, which is again very expensive

and not many can afford it. There are many different sign

languages in the world. There are around 200 sign languages in

the world including Chinese, Spanish, Irish, American Sign

Language and Indian Sign Language, which are the most

commonly used sign languages.

The ML based Sign Language Detection system aims at

communicating with differently abled people without the help

of any expensive human interpreter. This model translates the

signs/gestures captured into text so that the user can simply read

and know what the person is trying to convey irrespective of

whether the user has knowledge about the sign language or not.

2. Literature Survey

The first approach in relation to sign language recognition

was by Bergh in 2011 [1]. Haar wavelets and database

searching were employed to build a hand gesture recognition

system. Although this system gives good results, it only

considers six classes of gestures.

In a study by Balbin et al. [2], the system only recognized

five Filipino words and used colored gloves for hand position

recognition; our model can be trained for different gestures and

can be recognized without any colored gloves and using only

bare hands.

In our model the images are captured using a PC Cam and

were able to get an accuracy of 75% at an average. In other

models these were captured using motion sensors, such as

electromyography (EMG) sensors [3], RGB cameras [4],

Kinect sensors [5] and their combinations. Although the

accuracy of detecting the signs is high, they also have

limitations; first is their cost, as they require large-size datasets

with diverse sign motion they go toned a high-end computer

with powerful specifications; whereas in our model this can be

achieved with minimum specifications.

The SSD model was also adopted for hand detection. The

proposed model was evaluated based on the IsoGD dataset,

which achieved 4.25% accuracy [6].

In 2016, with the aim of real-time object detection in testing

images, two novel algorithms came out, namely, YOLO and

SSD [7], [8]. YOLO uses CNN to reduce the spatial dimension

detection box. It performs a linear regression to make boundary

box predictions. In the case of SSD, the size of the detecting

box is usually fixed and used for simultaneous size detection.

Therefore, the purported advantage of SSD is known to be the

simultaneous detection of objects with various sizes.

In comparison to other systems which only recognized ASL

alphabets, our model is mainly for recognizing gestures,

making it more useful and effective. In the literature [9]-[12],

the systems only recognized ASL alphabets.

3. Methodology

A. System Architecture

In this project, a real time sign recognition ML model was

built with the help of LabelImg software and TensorFlow

Object Detection API, using real coloring images. This system

was divided into three main phases; Initially we wrote some

code to automate the picture taking process, once the pictures

were taken, we used the LabelImg software to segregate these

Machine Learning Based Real Time Sign

Language Detection

P. Rishi Sanmitra1, V. V. Sai Sowmya2, K. Lalithanjana3*

1,2,3Student, Department of Computer Science and Engineering, CMR Technical Campus, Hyderabad, India

P. R. Sanmitra et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 138

images into the appropriate labels. These labels are named in

such a way that they express the meaning of the gesture made.

Once the labelling of the images was done, we have two sets of

files for each image taken, one which has the actual image in it

and the other being an XML file which contains information of

where the model should be looking in the image during the

training process. Once these files are generated, the training

process begins, where the Machine is going to use a Deep

Learning SSD ML algorithm to extract features from the

desired image. Finally, after the model has been trained, it

allows for the Sign Language Detection part to begin. To

achieve the detection, we are using the TensorFlow Object

Detection API where the extracted features from the images

taken are passed onto the TensorFlow module which is going to

make comparisons with the real time video present in the frame.

On detection of any of these features it is going to generate a

bounding box around the gesture and make the prediction. The

prediction is going to be the same as the label of the image,

hence it is very important to understand the gesture made so as

to name the label correctly, a wrongly named label could result

in a wrong prediction.

Fig. 1. System architecture

B. Dataset Creation

The LabelImg software is used for graphically labelling the

images that is further used when recognizing the images. We

have to keep in mind that labelling has to be done correctly i.e,

the gesture should be labelled with a right label so that we get

the gestures recognized correctly later with the right label. Once

the images are labelled and saved an XML file is created for

that image. This XML file contains the information about where

the model should be looking in the image during the training

process.

This model is trained for 5 different gestures hence 5

different labels were used for labelling them. For each gesture

20 images were used that are clicked in different angles. A code

is used to take the images automatically and save them in a

particular folder.

The labelling is done by drawing a box around the gesture

made. This box is called the Ground Truth which means a set

of measurements that is known to be much more accurate than

measurements from the system you are testing. The below

figure (i.e., Fig. 2) demonstrates how the images are labelled

using LabelImg software.

The XML file associated with a labelled image showing

where the model has to search for the gesture while training the

ML model is shown in the below figure (i.e., Fig. 3).

Fig. 2. Labelling the gestures using LabelImg

Fig. 3. XML file of a labelled image

C. Training and Testing

Out of the 20 images collected along with the generated

XML files for each image, 5 were used for testing and the

remaining 15 were used for training the model. The ML model

was trained using the Deep Learning SSD ML Algorithm and

tested using the TensorFlow Object Detection API.

SSD (Single Shot Detection) algorithm is designed for object

detection in real-time. Faster R-CNN uses a region proposal

network to create boundary boxes and utilizes those boxes to

classify objects. While it is considered state-of-the-art in

accuracy, the whole process runs at 7 frames per second. Far

below what real-time processing needs. SSD speeds up the

process by eliminating the need for the region proposal

network. To recover the drop in accuracy, SSD applies a few

improvements including multi-scale features and default boxes.

These improvements allow SSD to match the Faster R-CNN’s

accuracy using lower resolution images, which further pushes

the speed higher.

The SSD architecture is a single convolution network that

learns to predict bounding box locations and classify these

locations in one pass. Hence, SSD can be trained end-to-end.

The SSD network consists of base architecture (MobileNet in

this case) followed by several convolution layers.

TensorFlow is an open-source library for numerical

computation and large-scale machine learning that eases

Google Brain TensorFlow, the process of acquiring data,

training models, serving predictions, and refining future results.

P. R. Sanmitra et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 139

The TensorFlow Object Detection API is an open-source

framework built on top of TensorFlow that makes it easy to

construct, train and deploy object detection models. There are

already pre-trained models in their framework which are

referred to as Model Zoo. It includes a collection of pre-trained

models trained on various datasets such as the COCO (Common

Objects in Context) dataset, the KITTI dataset, and the Open

Images Dataset. The TensorFlow object detection API is the

framework for creating a deep learning network that solves

object detection problems.

Fig. 4. SSD network architecture

TensorFlow bundles together Machine Learning and Deep

Learning models and algorithms. It uses Python as a convenient

front-end and runs it efficiently in optimized C++. TensorFlow

allows developers to create a graph of computations to perform.

Each node in the graph represents a mathematical operation and

each connection represents data. Hence, instead of dealing with

low-details like figuring out proper ways to hitch the output of

one function to the input of another, the developer can focus on

the overall logic of the application.

We use ‘Checkpoints’ that are save points which a model

generates to keep track of how much it has trained itself. In case

the training process is interrupted, it would simply start itself

again from the checkpoint. Since the training process can be

very time consuming, this mechanism allows the model to save

itself from system failures. The learning rate of our model when

used 10000 steps for training is shown below in Fig. 5.

Fig. 5. Learning rate of 10000 steps training model

A loss function is used to optimize the machine learning

algorithm. The loss is calculated on training and testing, and its

interpretation is based on how well the model is doing in these

two sets. It is the sum of errors made for each example in

training or testing sets. Loss value implies how poorly or well a

model behaves after each iteration of optimization. The loss at

each iteration of our machine learning model has been

decreasing which indicates a better accuracy of model for

detection. The loss of our model is shown in the below Fig. 6.

Fig. 6. Loss of the Machine Learning model

The localization loss is the mismatch between the ground

truth box and the predicted boundary box. SSD only penalizes

predictions from positive matches. Only the predictions from

the positive matches to get closer to the ground truth is required.

Negative matches can be ignored. Ground truth box is the box

that is created in the LabelImg software while creating the

labels and the predicted boundary box is the box that is

predicted by the model while testing the images. The

localization loss for our model is 0.05 as shown in Fig. 9.

Fig. 7. Formula for calculating localization loss

The confidence loss is the loss of making a class prediction.

For every positive match prediction, the loss is penalized

according to the confidence score of the corresponding class.

For negative match predictions, the loss is penalized according

to the confidence score of the class “0”: class “0” classifies no

object is detected. The confidence loss for our model is 0.19 as

shown in Fig. 9.

Fig. 8. Formula for calculating confidence loss

The below image (i.e., Fig. 9.) represents the evaluation

results and evaluation metrics for a 10000-step machine

learning model. An evaluation metric consists of the average

precision and average recall. For each precision and recall an

IOU is calculated. IOU stands for Intersection Over Union

P. R. Sanmitra et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 140

which determines the ratio of area of intersection between the

Ground Truth and predicted box to the area of union between

the Ground Truth and Predicted box (as shown in Fig. 10)

Fig. 9. Evaluation results and evaluation metrics

Fig. 10. Intersection over Union (IoU)

Fig. 11. Loss at each iteration

A loss function is a mathematical formula used to produce

loss values during training time. During training, the

performance of a model is measured by the loss (L) that the

model produces for each sample or batch of samples. The loss

essentially measures how “far” the predicted values (y) are from

the expected value (y). If y is far away (very different) from y,

then the loss will be high. However, if y is close to y then the

loss is low. The model uses the loss as an “indicator” to update

its parameters so that it can produce very small losses in future

predictions. That means producing y that are very close to y.

The figure (i.e., Fig. 11.) shows the loss incurred at each step

while training the model. The lowest loss recorded is 0.133 at

step 9400 and at step 9700.

4. Results and Discussions

A real-time Sign Language Detection with a SSD algorithm

using real coloring images from a PC camera was introduced.

In this paper, signs are translated into text statements to help the

differently abled people to communicate with others with ease.

This system showed good results by taking advantage of deep

learning techniques. This section discusses the results obtained

by the system.

Fig. 12. shows an accuracy of 90% for the recognition of the

sign ‘No’ by the system.

Fig. 12. Gesture recognition for No

Fig. 13. Gesture recognition for ILoveYou and Hello

P. R. Sanmitra et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 141

Two gestures can also be recognized simultaneously using

our system. The accuracy has shown to be the same irrespective

of two gestures being made simultaneously. In Fig. 13. we can

see that both the gestures are being recognized without any

difficulty.

Apart from the gestures recognized above, there are two

more gestures that we used for training the model. Total five

gestures were used to train the machine learning model by

taking 20 images for each model in different angles,

backgrounds, skin tones, lighting and other various situations.

Out of the 20 images collected, 15 were used for training and 5

were for testing. All the images were converted into gray scale

images as shown in Fig. 14., for training the ML model. The

results have shown up to an average accuracy of 85%.

Fig. 14. Images for training in grayscale

5. Conclusion

In this paper, a real-time ML based Sign Language

Recognition system was built using real coloring images that

were taken with the help of a PC camera. New datasets were

built to contain a wider variety of features for example different

lightings, different skin tones, different backgrounds, and a

wide variety of hand gestures. The system achieved a maximal

accuracy of about 75% for training and 85% for the validation

set. In addition, the system showed a high accuracy with the

introduction of new test data that had not been used in the

training. There is a lot of scope for this project, since we have

the ability to label these images, we can label the gestures in

any language required, allowing the user to communicate with

others irrespective of the language boundaries.

References

[1] M. Van den Bergh and L. Van Gool, "Combining RGB and ToF cameras

for real-time 3D hand gesture interaction," 2011 IEEE Workshop on

Applications of Computer Vision (WACV), 2011, pp. 66-72.
[2] J. R. Balbin et al., "Sign language word translator using Neural Networks

for the Aurally Impaired as a tool for communication," 2016 6th IEEE

International Conference on Control System, Computing and Engineering
(ICCSCE), 2016, pp. 425-429.

[3] J. Wu, Z. Tian, L. Sun, L. Estevez and R. Jafari, "Real-time American

Sign Language Recognition using wrist-worn motion and surface EMG
sensors," 2015 IEEE 12th International Conference on Wearable and

Implantable Body Sensor Networks (BSN), 2015, pp. 1-6.

[4] D. Mart, Sign Language Translator Using Microsoft Kinect XBOX 360
TM, 2012, pp. 1-76.

[5] Cao Dong, M. C. Leu and Z. Yin, "American Sign Language alphabet

recognition using Microsoft Kinect," 2015 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2015,

pp. 44-52.

[6] Rastgoo R, Kiani K, Escalera S, “Video-based isolated hand sign
language recognition using a deep cascaded model,” in Multimed. Tools

Appl. 2020, pp. 22965–22987.

[7] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788.

[8] Liu W, Anguelov D, Erhan D, et al., “SSD: Single shot multibox
detector,” in Proceedings of the European Conference on Computer

Vision,” New York: Springer; 2016, pp. 21–37.

[9] T. Kim, G. Shakhnarovich, and K. Livescu, “Finger-spelling recognition
with semi-markov conditional random fields,” in Proc. 2013 IEEE

International Conference on Computer Vision, 2013, pp. 1521–1528.

[10] N. Pugeault and R. Bowden, “Spelling it out: Real-time asl finger-spelling
recognition,” in Proc. 2011 IEEE International Conference on Computer

Vision Workshop, 2011, pp. 1114–1119

[11] S. Shahriar, A. Siddiquee, T. Islam, A. Ghosh, R. Chakraborty, A. I. Khan,
C. Shahnaz, and S. A. Fattah, “Real-time american sign language

recognition using skin segmentation and image category classification
with convolutional neural network and deep learning,” in Proc. TENCON

2018-2018 IEEE Region 10 Conference, 2018, pp. 1168-1171.

[12] R. Daroya, D. Peralta, and P. Naval, “Alphabet sign language image
classification using deep learning,” in Proc. TENCON 2018-2018 IEEE

Region 10 Conference, 2018, pp. 646-650.

